Step 1: Assign a variable to the value we are solving for
$$ I = \int_1^3 f(x) dx $$
Step 2: Solve for $f(x)$
if
$$ 3f(x) = f(3x) $$ then
$$ f(x) = \frac{1}{3} f(3x) $$
Step 3: Solve for a portion of the definite integral we are after
$$ \int_\frac{1}{3}^1 f(x) dx = \int_\frac{1}{3}^1 \frac{1}{3} f(3x) dx $$
$$ \frac{1}{3} \int_\frac{1}{3}^1 f(3x) dx $$
Substitute
$$
u=3x
\newline
dx=\frac{1}{3}du
\newline
\frac{1}{9} \int_1^3 f(u) du
$$
Observe that $$\int_\frac{1}{3}^1 f(x) dx = \frac{1}{9} \int_1^3 f(u) du = \frac{1}{9} I$$
Step 4: Solve for ever smaller parts of the definite integral adjacent to the previous one
$$ \int_\frac{1}{9}^\frac{1}{3} f(x) dx = \int_\frac{1}{9}^\frac{1}{3} \frac{1}{3} f(3x) dx $$
$$ \frac{1}{3} \int_\frac{1}{9}^\frac{1}{3} f(3x) dx $$
Substitute
$$
u=3x
\newline
dx=\frac{1}{3}du
\newline
\frac{1}{9} \int_\frac{1}{3}^1 f(u) du
$$
Observe that $$\int_\frac{1}{9}^\frac{1}{3} f(x) dx = \frac{1}{9} \int_\frac{1}{3}^1 f(u) du = \frac{1}{9^2} I$$
Step 5: At this point we can see a pattern
$$\int_\frac{1}{3^n}^\frac{1}{3^{n-1}} f(x) dx = \frac{1}{9^n}I $$
We also know that at the limit this is equal to $\frac{1}{3^n} = 0$
Step 6: Create a geometric series
$$ \lim\limits_{n \to \infty} \Bigg( \int_\frac{1}{3}^1 f(x) dx + \int_\frac{1}{9}^\frac{1}{3} f(x) dx \dotsc \int_\frac{1}{3^n}^\frac{1}{3^{n-1}} f(x) dx \Bigg) = \lim\limits_{n \to \infty} \Bigg( \frac{1}{9}I + \frac{1}{9^2}I \dotsc \frac{1}{9^n}I \Bigg) = \int_0^1 f(x) dx = 1$$
$$ \displaystyle\sum_{n=1}^\infty \Bigg( \frac{1}{9^n}I \Bigg) = I\displaystyle\sum_{n=1}^\infty \Bigg( \frac{1}{9^n} \Bigg) = 1$$
This is a converging geometric series. The sum of the series is
$$\displaystyle\sum_{n=1}^\infty \Bigg( \frac{1}{9^n} \Bigg) = \frac{\frac{1}{9}}{1-\frac{1}{9}} = \frac{\frac{1}{9}}{\frac{8}{9}} = \frac{1}{8}$$
So
$$ \frac{1}{8}I = 1$$
$$ \boxed{I = \int_1^3 f(x) dx = 8 = 🤯}$$
Inspired by blackpenredpen
Your obedient servant,